Particle - Mirror Particle Oscillations:
 CP-violation and Baryon Asymmetry

Zurab Berezhiani
Università di L'Aquila and LNGS, Italy

Alice \& Mirror World

"Looking-Glass Universe" - Parallel "Mirror" World

- Carrol's Alice.

- Interactions
- B \& L violation
- BBN demands

Broken P can be restored by mirror fermions
Lee \& Yang '56 Mirror sector hidden copy of our sector Kobzarev, Okun, Pomeranchuk '66 Alice strings
A.S. Schwarz' ??

Mirror dark matter (invisible stars)
Blinnikov, Khlopov '83 $S U(3) \times S U(2) \times U(1) \times S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime} \quad$ Foot, Lew, Volkas '91
Two identical gauge factors, $G \times G^{\prime}$, with the identical field contents and Lagrangians: $\mathcal{L}_{\text {tot }}=\mathcal{L}+\mathcal{L}^{\prime}+\mathcal{L}_{\text {mix }}-S U(5) \times S U(5)^{\prime}, \quad$ etc.

- Can naturally emerge in string theory: O \& M matter fields localized on two parallel branes with gravity propagating in bulk: e.g. $E_{8} \times E_{8}^{\prime}$
- Exact parity $G \leftrightarrow G^{\prime}$: Mirror matter is dark (for us), but its particle physics we know exactly - no new parameters!
- Spont. broken parity $G \leftrightarrow G^{\prime}: M_{W}^{\prime} \neq M_{W} \quad\left(M_{W}^{\prime} \geq\right.$ few TeV $)$

Particle spectrum rescaled by $\zeta=M_{W}^{\prime} / M_{W} \quad$ ZB \& Mohapatra '95
Shadow DM, sterile neutrinos, Machos
ZB, Dolgov, Mohapatra '96
Strong CP and new axion (axidragon)
ZB, Gianfagna, Giannotti '00
SUSY little Higgs - accidental global $U(4)$

Mirror Sector, Mirror Particles \& Mirror Parity

$$
\begin{array}{cc}
S U(3) \times S U(2) \times U(1) & \times \quad S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime} \\
\text { gauge }(g, W, Z, \gamma) & \text { gauge }\left(g^{\prime}, W^{\prime}, Z^{\prime}, \gamma^{\prime}\right) \\
\text { \& Higgs }(\phi) \text { fields } & \& \text { Higgs }\left(\phi^{\prime}\right) \text { fields }
\end{array}
$$

$$
\text { quarks }(B=1 / 3) \quad \text { leptons }(\mathrm{L}=1) \quad \mid \quad \text { quarks }\left(\mathrm{B}^{\prime}=1 / 3\right) \quad \text { leptons }\left(\mathrm{L}^{\prime}=1\right)
$$

$q_{L}=(u, d)_{L}^{t}$	$l_{L}=(\nu, e)_{L}^{t}$	$q_{L}^{\prime}=\left(u^{\prime}, d^{\prime}\right)_{L}^{t}$	$l_{L}^{\prime}=\left(\nu^{\prime}, e^{\prime}\right)_{L}^{t}$
$u_{R} d_{R}$	e_{R}	$u_{R}^{\prime} d_{R}^{\prime}$	e_{R}^{\prime}

$$
\begin{array}{cc|cc}
\widetilde{\text { quarks }}(\mathrm{B}=-1 / 3) & \text { leptons }(\mathrm{L}=-1) & \text { quarks }\left(\mathrm{B}^{\prime}=-1 / 3\right) & \text { leptons }\left(\mathrm{L}^{\prime}=-1\right) \\
\tilde{q}_{R}=(\tilde{u}, \tilde{d}){ }_{R}^{t} & \tilde{l}_{R}=(\tilde{\nu}, \tilde{e})_{R}^{t} & \tilde{q}_{R}^{\prime}=\left(\tilde{u}^{\prime}, \tilde{d}^{\prime}\right)_{R}^{t} & \tilde{l}_{R}^{\prime}=\left(\tilde{\nu}^{\prime}, \tilde{e}^{\prime}\right)_{R}^{t} \\
\tilde{u}_{L} \tilde{d}_{L} & \tilde{e}_{L} & \tilde{u}_{L}^{\prime} \tilde{d}_{L}^{\prime} & \tilde{e}_{L}^{\prime} \\
\hline
\end{array}
$$

$$
-\mathcal{L}_{\mathrm{Yuk}}=f_{L} Y \tilde{f}_{L} \phi+\tilde{f}_{R} Y^{*} f_{R} \tilde{\phi} \quad \mid \quad \mathcal{L}_{\text {Yuk }}^{\prime}=f_{L}^{\prime} Y^{\prime} \tilde{f}_{L}^{\prime} \phi^{\prime}+\tilde{f}_{R}^{\prime} Y^{\prime *} f_{R}^{\prime} \tilde{\phi}^{\prime}
$$

- D-parity: $L \leftrightarrow L^{\prime}, R \leftrightarrow R^{\prime}, \quad \phi \leftrightarrow \phi^{\prime}: \quad Y^{\prime}=Y$ - identical xero copy
- M-parity: $L \leftrightarrow R^{\prime}, R \leftrightarrow L^{\prime}, \quad \phi \leftrightarrow \tilde{\phi}^{\prime}: \quad Y^{\prime}=Y^{\dagger} \bullet$ mirror (chiral) copy
(but also model of mirror gravity can be constructed !)
- Carrol's Alice..
- Mirror World - Mirror Particles - Interactions Can be at tree level, or induced by exchange of extra gauge singlet particles or common gauge fields acting with both O \& M particles ... another interesting story !
Z. Berezhiani, Phys. Lett. B 417, 287 (1998)
these interactions can induce particle mixing phenomena between O \& M sectors: any neutral particle (elementary or composite) can mix its mirror twin exactly degenerate in mass
- photon - mirror photon kinetic mixing $\varepsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$

Holdom '86 mirror particles become "millicharged" $Q^{\prime} \sim \varepsilon Q$ relative to our photon \longrightarrow positronium - mirror positronium mixing ($e^{+} e^{-} \rightarrow e^{\prime+} e^{\prime-}$) Glashow '86 ... but BBN : $\varepsilon<10^{-8}, \mathrm{CMB}+\mathrm{LSS}: ~ \varepsilon<10^{-9}$
■ meson - mirror meson mixing: $\pi^{0}-\pi^{0 \prime}, \quad K^{0}-K^{0 \prime}, \quad \rho^{0}-\rho^{0 \prime}$, etc. $\frac{1}{M^{2}}\left(\bar{u} \gamma^{5} u-\bar{d} \gamma^{5} d\right)\left(\bar{u}^{\prime} \gamma^{5} u^{\prime}-\bar{d}^{\prime} \gamma^{5} d^{\prime}\right), \quad \frac{1}{M^{2}}\left(\bar{d} \gamma^{5} s\right)\left(\bar{d}^{\prime} \gamma^{5} s^{\prime}\right) \quad(\Delta S=1)$
\ldots analogous to $\frac{1}{M^{2}}\left(\bar{d} \gamma^{5} s\right)\left(\bar{d} \gamma^{5} s\right) \quad \longrightarrow \quad K^{0}-\bar{K}^{0} \quad$ mixing $\quad(\Delta S=2)$
Phenom. limits: $\quad M>10 \mathrm{TeV} \quad\left(\pi^{0}-\pi^{0 \prime}\right), \quad M>100 \mathrm{TeV}\left(K^{0}-K^{0 \prime}\right)$

Lepton \& baryon number violating interactions

■ neutrino - mirror neutrino mixing $\left(\nu-\nu^{\prime}\right)$ - effective operators : Z. Berezhiani, R.N. Mohapatra, Phys. Rev. D 52, 6607 (1995)
$\frac{1}{M}(l \phi)\left(l^{\prime} \phi^{\prime}\right) \quad\left(\Delta L=1, \Delta L^{\prime}=1\right)$
analogous to $\quad \frac{1}{M}(l \phi)^{2} \quad(\Delta L=2), \quad \frac{1}{M}\left(l^{\prime} \phi^{\prime}\right)^{2} \quad\left(\Delta L^{\prime}=2\right)$

- operators that generate neutrino Majorana masses via seesaw mechanism constraints from active-sterile neutrino mixing
- neutron - mirror neutron mixing $\left(n-n^{\prime}\right)$ - effective operators :
$\frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right), \quad\left(\Delta B=1, \Delta B^{\prime}=1\right)$ analogous operators $\frac{1}{M^{5}}(u d d)^{2} \quad(\Delta B=2), \frac{1}{M^{5}}\left(u^{\prime} d^{\prime} d^{\prime}\right)^{2} \quad\left(\Delta B^{\prime}=2\right)$ generate neutron - antineutron mixing

■ hydrogen - mirror hydrogen mixing - effective operators :
$\frac{1}{M^{8}}(u d d e)\left(u^{\prime} d^{\prime} d^{\prime} e^{\prime}\right), \quad\left(\Delta B=1, \Delta L=1 ; \Delta B^{\prime}=1, \Delta L^{\prime}=1\right)$
c.f. operators $\frac{1}{M^{8}}(u d d e)^{2} \longrightarrow$ hydrogen - antihydrogen atom mixing

- Carrol's Alice.
- Mirror World
- Mirror Particles
- Interactions

BBN demands :

- Carrol's Alice..
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix
- Experiment
- Experiment
- Experiment

Mirror particle physics \equiv ordinary particle physics but mirror cosmology \neq ordinary cosmology

■ at the $B B N$ epoch, $T \sim 1 \mathrm{MeV}, \quad g_{*}=g_{*}^{S M}=10.75$ as contributed by the $\gamma, e^{ \pm}$and 3ν species : $\quad N_{\nu}=3$
■ if $T^{\prime}=T$, mirror world would give the same contribution: $g_{*}^{\mathrm{eff}}=2 \times g_{*}^{S M}=21.5$ - equivalent to $\Delta N_{\nu}=6.14$!!!
■ If $T^{\prime}<T$, then $g_{*}^{\text {eff }} \approx g_{*}^{S M}\left(1+x^{4}\right), x=T^{\prime} / T \longrightarrow \Delta N_{\nu}=6.14 \cdot x^{4}$ E.g. $\Delta N_{\nu}<0.4$ requires $x<0.5$; for $x=0.2 \quad \Delta N_{\nu} \simeq 0.01$

- Paradigm - different initial conditions \& weak contact :
- after inflation O and M worlds are (re)heated non-symmetrically, $T^{\prime}<T$
- processes between O-M particles are slow enough \& stay Out-of-Equilibrium
- both sectors evolve adiabatically, without significant entropy production

So $x=T^{\prime} / T$ is nearly independent of time $\left(T_{\mathrm{CMB}}^{\prime} / T_{\mathrm{CMB}}\right.$ today)
$\mathrm{BBN}: \Delta N_{\nu} / 6.14=x^{4} \ll 1 \quad \longrightarrow \quad \mathrm{BBN}^{\prime}: \quad \Delta N_{\nu}^{\prime} / 6.14=x^{-4} \gg 1$
${ }^{1} \mathrm{H} \quad 75 \%, \quad{ }^{4} \mathrm{He} \quad 25 \% \quad$ vs. $\quad{ }^{1} \mathrm{H}^{\prime} \quad 25 \%,{ }^{4} \mathrm{He}^{\prime} \quad 75 \%$
Z. Berezhiani, D. Comelli, F. Villante, Phys. Lett. B 503, 362 (2001)

Cosmic Coincidence \& Fine Tuning Problems

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands

Todays Universe is flat ($\Omega_{\mathrm{tot}} \approx 1$) and multi-component:

- $\Omega_{\mathrm{B}} \simeq 0.04$ observable matter - Baryons !

■ $\Omega_{\mathrm{D}} \simeq 0.20 \quad$ dark matter: - WIMPS? Axions?
■ $\Omega_{\Lambda} \simeq 0.75$ dark energy: - Λ-term? 5th-essence?
A. coincidence of matter $\Omega_{\mathrm{M}}=\Omega_{\mathrm{D}}+\Omega_{\mathrm{B}}$ and dark energy Ω_{Λ} : $\Omega_{\mathrm{M}} / \Omega_{\Lambda} \simeq 0.3$

- $\rho_{\Lambda} \sim$ Const., $\quad \rho_{\mathrm{M}} \sim a^{-3} ;$ why $\rho_{\mathrm{M}} / \rho_{\Lambda} \sim 1$ - just Today?

Antrophic answer: if not Today, then it could be Yesterday or Tomorrow ...
B. Fine Tuning between visible Ω_{B} and dark Ω_{D} matter: $\Omega_{\mathrm{B}} / \Omega_{\mathrm{D}} \simeq 0.2$ - $\rho_{\mathrm{B}} \sim a^{-3}, \rho_{\mathrm{D}} \sim a^{-3}$; why $\rho_{\mathrm{B}} / \rho_{\mathrm{D}} \sim 1-$ Yesterday Today \& Tomorrow?

Difficult question ... popular models for the primordial Baryogenesis (GUT-B, Lepto-B, Spont. B, Affleck-Dine B, EW B, ...) have no feeling for the popular DM candidates (Wimp, Wimpzilla, axion, axino, gravitino ...)

- How Baryon Asymmetry could knew about Dark Matter? - again anthropic (landscaped) Fine Tunings in Particle Physics and Cosmology? Just for our good?

Visible vs. Dark matter

- Carrol's Alice

- Mirror World
- Visible matter: $\rho_{\mathrm{B}}=n_{\mathrm{B}} M_{B}, M_{B} \simeq 1 \mathrm{GeV}$ - nucleons, $\eta=n_{B} / n_{\gamma} \sim 10^{-9}$

Sakharov's conditions: $B(B-L) \& \mathrm{CP}$ violation, Out-of-Equilibrium

- in Baryogenesis models η depends on several factors, like CP-violating constants, particle degrees of freedom, mass scales, particle interaction strength and goodness of out-of-equilibrium.... and in some models (e.g. Affleck-Dine) on the initial conditions as well ...
- Dark matter: $\rho_{\mathrm{D}}=n_{X} M_{X}$, but $M_{X}=$?, $n_{X}=$?
- too wide spectrum of possibilities ...

Axion: $M_{X} \sim 10^{-5} \mathrm{eV}$; Wimp: $M_{X} \sim 1 \mathrm{TeV}$; Wimpzilla: $M_{X} \sim 10^{14} \mathrm{GeV} \ldots$

- in relative models n_{X} depends on varios factors, like equilibrium status and particle degrees of freedom, particle masses and interaction strength (production and annihilation cross sections).... and in some models (e.g. Axion or Wimpzilla) on the initial conditions as well ...

How then the mechanisms of Baryogenesis and Dark Matter synthesis, having different particle physics and corresponding to different epochs, could know about each-other? - How $\rho_{B}=n_{B} M_{B}$ could match $\rho_{X}=n_{X} M_{X}$ so intimately?

B vs. D - Fine Tuning demonstration

- Carrol's Alice..

- Mirror World
- Mirror Particles
- Interactions
- B \& L violation - BBN demands - Present Cosmology - Visible vs. Dark matter - B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix
- Experiment
- Experiment
- Experiment

Evolution of the Baryon number ($\cdot \cdots$) in e.g. Leptogenesis scenario confronted to the evolution of the Dark Matter density (-) in the scenarios of WIMP (left pannel) and Axion (right pannel)

Unified origin of B and D? Both fractions at one shoot?

- Carrol's Alice...
- Mirror World

$$
\frac{\rho_{X}}{\rho_{B}}=\frac{M_{X} n_{X}}{M_{B} n_{B}} \sim 1 \text { can be natural }
$$

- if DM properties are similar to baryon ones: namely $M_{X} \sim M_{B}$
- and both fractions are generated by same mechanism so that $n_{X} \sim n_{B}$

0
 \& M neutrino mixing

Mixed $D=5$ effective operators

- Carrol's Alice..
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation - BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing

- See-Saw

- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation - Oscillation
$\frac{A}{M} l l \phi \phi_{(\Delta L=2)}+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi_{\left(\Delta L^{\prime}=2\right)}^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi_{\left(\Delta L=1, \Delta L^{\prime}=1\right)}^{\prime}$
Substituting VEVs $\langle\phi\rangle=v$ and $\left\langle\phi^{\prime}\right\rangle=v^{\prime}$, we get $\nu-\nu^{\prime}$ mixing $\left(\begin{array}{cc}\hat{m}_{\nu} & \hat{m}_{\nu \nu^{\prime}} \\ \hat{m}_{\nu \nu^{\prime}}^{t} & \hat{m}_{\nu^{\prime}}\end{array}\right)=\frac{1}{M}\left(\begin{array}{cc}A v^{2} & D v v^{\prime} \\ D^{t} v v^{\prime} & A^{\prime} v^{\prime 2}\end{array}\right)-$ active-sterile ν system
[M-parity: $\quad A^{\prime}=A^{*}, \quad D=D^{\dagger} ; \quad \mathrm{D}$-parity: $\left.\quad A^{\prime}=A, \quad D=D^{t}\right]$
- $v^{\prime}=v: \quad m_{\nu^{\prime}}=m_{\nu} \quad$ and maximal mixing $\quad \theta_{\nu \nu^{\prime}}=45^{\circ} ; \quad$ Foot \& Volkas '95
- $v^{\prime}>v: \quad m_{\nu^{\prime}} \sim\left(v^{\prime} / v\right)^{2} m_{\nu}$ and small mixing $\theta_{\nu \nu^{\prime}} \sim v / v^{\prime}$;
e.g. $v^{\prime} / v \sim 10^{2}$: $\sim k e V$ sterile neutrinos as WDM Z.B., Dolgov, Mohapatra '96
- $A, A^{\prime}=0\left(L-L^{\prime}\right.$ conserved) light - Dirac neutrinos Z.B. \& Bento '05 with L components in ordinary sector and R components in mirror sector

Mixed Seesaw and Leptogenesis between O \& M sectors

- Carrol's Alice..
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- Heavy gauge singlet fermions $N_{a}, \quad a=1,2,3, \ldots$ with large Majorana mass terms $M_{a b}=g_{a b} M$, can equally talk with both O and M leptons

$$
\begin{aligned}
& \mathcal{L}_{\text {Yuk }}=y_{i a} \phi l_{i} N_{a}+y_{i a}^{\prime} \phi^{\prime} l_{i}^{\prime} N_{a}+\frac{1}{2} M g_{a b} N_{a} N_{b}+\text { h.c. } ; \\
&\left(\mathrm{M}-\text { parity: } \quad y^{\prime}=y^{\dagger} ; \quad \text { D-parity: } \quad y^{\prime}=y\right)
\end{aligned}
$$

■ D=5 effective operators $\frac{A}{M} l l \phi \phi+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi^{\prime} \quad$ emerge after integrating out heavy states N, where

$$
A=y g^{-1} y^{t}, \quad A^{\prime}=y^{\prime} g^{-1} y^{\prime t}, \quad D=y g^{-1} y^{\prime t}
$$

■ They generate also processes like $l \phi \rightarrow \tilde{l}^{\prime} \tilde{\phi}^{\prime}\left(l^{\prime} \phi^{\prime}\right)(\Delta L=1)$ and $l \phi \rightarrow \tilde{l} \tilde{\phi}$ $(\Delta L=2)$ satisfying Sakharov's 3 conditions for baryogenesis
A. violate B-L - by definition
B. violate CP - complex Yukawa constants $y_{i a}$
C. out-of-equilibrium - already implied by the BBN
and thus generate $B-L \neq 0$ ($\rightarrow B \neq 0$ by sphalerons) for ordinary matter

- The same reactions generate $B^{\prime}-L^{\prime} \neq 0\left(\rightarrow B^{\prime} \neq 0\right)$ in Mirror sector.

Both matter fractions: observable and dark, can be generated at one shoot !!

$C P$ violation in $\Delta L=1$ and $\Delta L=2$ processes

L. Bento, Z. Berezhiani, PRL 87, 231304 (2001)

- Carrol's Alice.

- Mirror World

- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw

Leptogenesis: diagrams

- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix
- Experiment
- Experiment
- Experiment

$$
\begin{array}{ll}
\varepsilon_{C P}=\operatorname{Im} \operatorname{Tr}\left[\left(y^{\dagger} y\right)^{*} g^{-1}\left(y^{\prime \dagger} y^{\prime}\right) g^{-2}\left(y^{\dagger} y\right) g^{-1}\right] & \varepsilon_{C P} \rightarrow \varepsilon_{C P}^{\prime} \\
\varepsilon_{C P}^{\prime}=\operatorname{Im} \operatorname{Tr}\left[\left(y^{\prime \dagger} y^{\prime}\right)^{*} g^{-1}\left(y^{\dagger} y\right) g^{-2}\left(y^{\prime \dagger} y^{\prime}\right) g^{-1}\right] \quad \text { when } y \rightarrow y^{\prime}
\end{array}
$$

- D-parity: $y^{\prime}=y, \quad \varepsilon_{C P}=0$, but M-parity: $y^{\prime}=y^{\dagger} \quad \varepsilon_{C P} \neq 0$

Leptogenesis: $\quad M_{B}^{\prime}=M_{B} \ldots$ but $\quad \Omega_{B}^{\prime} \geq \Omega_{B}$

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation - BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams - Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix
- Experiment
- Experiment - Experiment

$$
\begin{aligned}
& B=D(k) \cdot Y^{(0)}, \quad B^{\prime}=D\left(k x^{3}\right) \cdot Y^{(0)} ; \quad Y^{(0)} \approx \frac{\varepsilon_{C P} M_{P l} T_{R}^{3}}{g_{*}^{3 / 2} M^{4}} \cdot 10^{-3} \\
& k=\left[\Gamma_{\mathrm{eff}} / H\right]_{T=T_{R}}, \quad x=T^{\prime} / T \approx 1.2\left(k / g_{*}\right)^{1 / 4} \quad\left(T_{R}=T_{\text {Reheating }}\right)
\end{aligned}
$$

Z.B. '03

BBN: $x<0.5 \rightarrow k \leq 4 ; \quad$ LSS: $x<0.2 \rightarrow k \leq 1.5$
Thus Ordinary/Mirror matter ratio can vary within $\quad \frac{\Omega_{B}}{\Omega_{B}^{\prime}}=D(k) \simeq 0.2-1$

Mirror Baryons as Dark Matter

- Carrol's Alice.
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix

As far as Mirror Baryons are dark (in terms of ordinary photons), they could constitute Dark Matter of the Universe
[Z.B., Comelli \& Villante '01]

- Once $x<1$, mirror photons decouple earlier than our photons: $z_{\mathrm{dec}}^{\prime} \simeq \frac{1}{x} z_{\mathrm{dec}}$ However, if the DM is entirelly due to mirror baryons, then the large scale structure (LSS) formation requires that mirror photons must decouple before Matter-Radiation Equality epoch: $x<x_{\text {eq }}=0.05\left(\Omega_{M} h^{2}\right)^{-1} \simeq 0.3$
- then mirror Jeans scale λ_{J}^{\prime} becomes smaller than the Hubble horizon before Matter-Radiation Equality
- mirror Silk scale is smaller than the one for the normal baryons:
$\lambda_{S}^{\prime} \sim 5 x_{\mathrm{eq}}^{5 / 4}\left(x / x_{\mathrm{eq}}\right)^{3 / 2}\left(\Omega_{M} h^{2}\right)^{-3 / 4}$ Mpc
Hence the structures formation at 1 Mpc scales (galaxies) implies $x<0.2$
N.B. Since mirror baryons constitute dissipative dark matter, the formation of the extended halos can be problematic, but perhaps possible if the star formation in the mirror sector is rather fast due to different temperature and chemical content (in fact, fast freezout of BBN in mirror sector is much faster, and it is dominated by Helium).
MACHOs as mirror stars - microlensing: $\quad M_{\mathrm{av}}=0.5 M_{\odot}$

Leptogenesis or Baryogenesis?

- Carrol's Alice... - Mirror World
$D=5$ operator $\frac{1}{M} l l^{\prime} \phi \phi^{\prime}(\Delta L=1)$ induced by heavy singlet N "seesaw" exchange (l, ϕ and $l^{\prime}, \phi^{\prime}$ ordinary and mirror lepton and Higgs doublets) - can generate B-L (and $B^{\prime}-L^{\prime}$) asymmetry via processes $l \phi \rightarrow l^{\prime} \phi^{\prime} \quad$ Z.B. and Bento '01

Z.B. and Bento '05
$D=9$ operator $\frac{1}{\mathcal{M}^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)(\Delta B=1)$ induced by heavy singlet N "seesaw" (u, d and u^{\prime}, d^{\prime} ordinary and mirror R-quarks, S, S^{\prime} color triplet scalars (squarks?)) - can generate $B-L$ (and $B^{\prime}-L^{\prime}$) asymmetry via processes $d S \rightarrow d^{\prime} S^{\prime}$

Neutron - Mirror neutron mixing

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces

Operators like $\frac{1}{\mathcal{M}^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)$ and $\frac{1}{\mathcal{M}^{5}}(q q d)\left(q^{\prime} q^{\prime} d^{\prime}\right)$ induce the neutron mirror neutron mass mixing $\delta m\left(\bar{n} n^{\prime}+\bar{n}^{\prime} n\right)$, with $\delta m \sim\left(\frac{10 \mathrm{TeV}}{\mathcal{M}}\right)^{5} \cdot 10^{-15} \mathrm{eV}$

- $n-n^{\prime}$ oscillation in vacuum:
maximal mixing $\theta=45^{\circ}$ and oscillation time $\tau_{\mathrm{osc}}=\delta m^{-1} \sim\left(\frac{\mathcal{M}}{10 \mathrm{TeV}}\right)^{5} \mathrm{~s}$
... similar to neutron - antineutron oscillation
Kuzmin '70, Glashow '79
Marshak \& Mohapatra '80
but experimental limits on $n-\bar{n}$ are strong: $\tau_{n \bar{n}}>10 \mathrm{yr}$, while $n-n^{\prime}$ is still allowed to be rather fast, faster then neutron decay: $\tau_{n n^{\prime}}<10 \mathrm{~min}$ Can be interesting if $\mathcal{M} \sim\left(M_{S}^{4} M_{N}\right)^{1 / 5} \sim 10 \mathrm{TeV}$ In the "seesaw" modelE.g. if $M_{S}, M_{N} \sim 10 \mathrm{TeV}$, or $M_{N} \sim 10^{12} \mathrm{TeV}$ and $M_{S} \sim 100 \mathrm{GeV}$ (see diagram of the previous page)
!!! N.B. Nuclear Stability
- $n-\tilde{n}$ destabilizes nuclei: $(A, Z) \rightarrow(A-1, Z, \tilde{n}) \rightarrow(A-2, Z)+\pi$'s $\tau_{n \tilde{n}}>10$ yr orso...
- $n-n^{\prime}$ does not: $(A, Z) \rightarrow(A-1, Z)+n^{\prime}$ not allowed by phase space! gives no restriction for $\tau_{n n^{\prime}}$!

Neutron - Mirror neutron oscillation in external fields

- Carrol's Alice... - Mirror World - Mirror Particles - Interactions
- B \& L violation - BBN demands - Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning demonstration - Unification - Neutrino Mixing

Effective (non-relativistic) Hamiltonian for $n-n^{\prime}$ oscillation

$$
H=\left(\begin{array}{cc}
m-i \Gamma / 2+V+\mu(\vec{B} \cdot \vec{\sigma}) & \delta m \\
\delta m & m^{\prime}-i \Gamma^{\prime} / 2+V^{\prime}+\mu^{\prime}\left(\overrightarrow{B^{\prime}} \cdot \vec{\sigma}\right)
\end{array}\right)
$$

- Exact mirror parity: $m^{\prime}=m, \Gamma^{\prime}=\Gamma, \quad \mu^{\prime}=\mu=-1.91 \mu_{N}$
- Grav. potentials are the same: $V^{\prime}=V$,
- but magnetic fields $\vec{B}^{\prime} \neq \vec{B}$:
$|\mu B| \simeq 6 \cdot 10^{-12} \mathrm{eV} / \mathrm{G} \quad$ (Earth magnetic field $\left.B \simeq 0.5 \mathrm{G}\right)-$
Take $B=(0,0, B)$ across z-axis, $\quad(\sigma \boldsymbol{B})=B \sigma_{z}=\operatorname{diag}(B,-B)$ and $B^{\prime}=0$
$H=\left(\begin{array}{cc} \pm 2 \omega_{B} & \delta m \\ \delta m & 0\end{array}\right) \quad$ diagonal in the basis $\left(\psi_{+}, \psi_{-}, \psi_{+}^{\prime}, \psi_{-}^{\prime}\right)$
- Energy gap $2 \omega_{B}=|\mu B| \simeq B[\mathrm{G}] \times 6 \cdot 10^{-12} \mathrm{eV}$

Oscillation probability $P_{n n^{\prime}}(t)=\sin ^{2} 2 \theta_{B} \sin ^{2}\left(t / \tau_{B}\right) \cdot e^{-t / \tau_{\text {dec }}}$
$\sin 2 \theta_{B}=\frac{\delta m}{\sqrt{\delta m^{2}+\omega_{B}^{2}}}, \quad \tau_{B}=\frac{1}{\sqrt{\delta m^{2}+\omega_{B}^{2}}}=\tau \sin 2 \theta_{B}, \quad \tau=\delta m^{-1}$

$n-n^{\prime}$ transition probabilities $\quad\left(B^{\prime}=0, \quad t \ll \tau_{\text {dec }}\right)$

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning demonstration - Unification - Neutrino Mixing

In vacuum $\left(\omega_{B}=0\right)$: $\quad P_{0}(t)=\sin ^{2}(\delta m t)$
($\tau_{0}=\tau=\delta m^{-1}, \quad \sin ^{2} 2 \theta_{0}=1: \quad 45^{\circ}$ mixing)
for short times $(t \ll \tau): \quad P_{0}(t)=\delta m^{2} t^{2}$
for long times $(t \gg \tau): \quad P_{0}(t)=\frac{1}{2}$
In medium $\left(\omega_{B}=\frac{1}{2}|\mu B| \gg \delta m\right): \quad P_{B}(t)=\frac{\delta m^{2}}{\delta m^{2}+\omega_{B}^{2}} \sin ^{2}\left(\sqrt{\delta m^{2}+\omega_{B}^{2}} t\right)$,
$\left(\tau_{B}=\omega_{B}^{-1} \ll \tau, \quad \sin ^{2} 2 \theta_{B}=\delta m^{2} / \omega_{B}^{2} \ll 1\right)$
for short times $\left(t \ll \tau_{B}\right): \quad P_{B}(t)=\delta m^{2} t^{2}$
for long times $\left(t \gg \tau_{B}\right): \quad P_{B}(t)=\frac{1}{2} \frac{\delta m^{2}}{\omega_{B}^{2}}$
$\Delta_{B}=P_{0}-P_{B}>0$
Magnetic field suppresses oscillation. The experiments with the reactor neutrons in free flight as well in the UCN traps could observe the difference in the neutron lose rates for the magnetic field on and off

Neutron - Mirror neutron mixing in astrophysics

- Carrol's Alice..
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities

Experimental limits \& and future search

- Carrol's Alice.
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- ILL experiment for $n-\tilde{n}$ oscillation search in flight: $t \simeq 0.1 \mathrm{~s}, \quad B<10^{-4} \mathrm{G}$
- no \tilde{n} event found, $\tau_{n \tilde{n}}>10^{8} \mathrm{~s} \quad$ (or $>3 \mathrm{yr}$)

Baldo Ceolin et al. '94
as for $n-n^{\prime}$: about 5% neutron deficit was observed, so taking $P_{n n^{\prime}}(t) \simeq(t / \tau)^{2}<10^{-2}, \quad \tau_{n n^{\prime}}>1 \mathrm{~s} \rightarrow \delta m<10^{-15} \mathrm{eV}$

- $n-n^{\prime}$ - anomalous UCN loses, $\eta<2 \cdot 10^{-6} \rightarrow \delta m<3 \cdot 10^{-15} \mathrm{eV}$
- Nuclear Stability gives no limit for $\tau_{n n^{\prime}}$

Recent Experimental search:

- $\tau>2.7 \mathrm{~s}$

Munich, Schmidt et al, Feb. 2007 (unpubl.)

- $\tau>103 \mathrm{~s}$
- $\tau>414 \mathrm{~S} \quad$ ILL Grenoble, Serebrov et al. June 2007, axXiv:0706.3600 [nucl-ex]

Future experiments can reach sensitivity $\tau \sim 10^{4} \mathrm{~s}$ (DUSEL ??)
$n-n^{\prime}$ oscillations can have very different experimental implications if n and n^{\prime} states are not exactly degenerate at $B=0$. E.g. gravity is not quite universal between O and M matters, or there exist non-universal 5th forces of non-gravitational origin, or the mirror magnetic field is non-zero. Opposite effect is possible: magnetic field could enhance the oscillation instead of suppressing it.

$n-n^{\prime}$ oscillation in mirror magnetic field $\quad\left(B^{\prime} \neq 0\right)$

Z. Berezhiani, arXiv: 0804.2088 [hep-ph]

- Carrol's Alice..
- Mirror World
- Mirror Particles - Interactions
- B \& L violation - BBN demands - Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing

Hamiltonian is 4×4 matrix describing oscillations and precessions

$$
H_{I}=\left(\begin{array}{cc}
\mu(\vec{B} \cdot \vec{\sigma}) & \delta m \\
\delta m & \mu\left(\overrightarrow{B^{\prime}} \cdot \vec{\sigma}\right)
\end{array}\right)=\left(\begin{array}{cc}
2 \vec{\omega} \cdot \vec{\sigma} & \delta m \\
\delta m & 2 \vec{\rho} \cdot \vec{\sigma}
\end{array}\right) .
$$

when oscillations can be averaged,

$$
\begin{aligned}
& B=0: P_{0}=\frac{1}{2} \sin ^{2} 2 \theta_{0}=\frac{\delta m^{2}}{2 \rho^{2}}=2\left(\frac{\delta m}{\mu B^{\prime}}\right)^{2} \\
& B \neq 0: P(\vec{B})=\frac{1}{2} \sin ^{2} 2 \theta=\frac{\delta m^{2}(\vec{\rho}+\vec{\omega})^{2}}{2\left(\vec{\rho}^{2}-\vec{\omega}^{2}\right)^{2}}=\frac{1+\eta^{2}+2 \eta \cos \beta}{\left(1-\eta^{2}\right)^{2}} P_{0} \\
& \eta=B / B^{\prime}, \quad \beta \text { angle between } \vec{B} \text { and } \vec{B}^{\prime}
\end{aligned}
$$

$$
P_{B}=\frac{P(\vec{B})+P(-\vec{B})}{2}=\frac{1+\eta^{2}}{\left(1-\eta^{2}\right)^{2}} P_{0} \quad \longrightarrow \quad \Delta_{B}=P_{B}-P_{0}=\frac{\eta^{2}\left(3-\eta^{2}\right)}{\left(1-\eta^{2}\right)^{2}} P_{0}
$$

Δ_{B} is positive $\left(P_{B}>P_{0}\right)$ if $\eta<\sqrt{3}$, i.e. $B^{\prime}>0.6 B$

$$
D_{B}(\beta)=\frac{P(\vec{B})-P(-\vec{B})}{2}=\frac{2 \eta}{\left(1-\eta^{2}\right)^{2}} P_{0} \cos \beta
$$

Comparison of observables

- Carrol's Alice

 - Mirror World - Mirror Particles - Interactions - B \& L violation - BBN demands - Present Cosmology- Visible vs. Dark matter B vs. D - Fine Tuning demonstration - Unification - Neutrino Mixing

$n-n^{\prime}$ oscillation in mirror magnetic field

- Carrol's Alice... - Mirror World - Mirror Particles - Interactions - B \& L violation - BBN demands

Experimental data from

$t_{s}[\mathrm{~s}]$	$50(\mathrm{a})$	$50(\mathrm{~b})$	$100(\mathrm{a})$	$175(\mathrm{a})$
$N_{B \uparrow}\left(t_{*}\right)$	44197 ± 53	44443 ± 53	28671 ± 30	17047 ± 31
$N_{B \downarrow}\left(t_{*}\right)$	44128 ± 53	44316 ± 46	28596 ± 30	16974 ± 31
$A_{B}\left(t_{*}\right) \times 10^{3}$	0.78 ± 0.85	1.43 ± 0.79	1.31 ± 0.74	2.15 ± 1.28
$N_{0}\left(t_{*}\right)$	44317 ± 40	44363 ± 53	28635 ± 21	17015 ± 22
$E_{B}\left(t_{*}\right) \times 10^{3}$	3.50 ± 1.24	-0.37 ± 1.43	0.05 ± 1.04	0.27 ± 1.83
κ_{B}	4.48 ± 5.12	-0.26 ± 1.00	0.04 ± 0.80	0.12 ± 0.85

Table 1: The UCN counts measured in configurations $B_{\uparrow}, B_{\downarrow}(B=0.06 G)$ and B_{0} for different storage times t_{s}. Effective time $t_{\mathrm{eff}}=t_{s}+(23 \pm 3) \mathrm{s}$.

$$
\begin{array}{lr}
D_{B}=(6.2 \pm 2.0) \times 10^{-7} & \left(\chi^{2} / \text { d.o.f. }=0.52 / 3\right) \\
\Delta_{B}=(2.9 \pm 2.9) \times 10^{-7} & \left(\chi^{2} / \text { d.o.f. }=6.9 / 3\right)
\end{array}
$$

Positive?
New Data (preliminary results) indicate 4.3σ effect for D_{B}

Spin dependent fifth forces

- Carrol's Alice...
- Mirror World
light pseudoscalar ϕ coupled with the nucleons of both sectors:
$i g_{p} \phi\left(\bar{N} \gamma^{5} N-\overline{N^{\prime}} \gamma^{5} N^{\prime}\right)=g_{p} \frac{\partial_{\mu} \phi}{2 m} \cdot\left(\bar{N} \gamma^{\mu} \gamma^{5} N-\bar{N}^{\prime} \gamma^{\mu} \gamma^{5} N^{\prime}\right)$
Inhomogeneity of $\phi \quad \rightarrow$ spin-dependent forces $\quad \frac{\nabla \phi}{2 m} \cdot\left(\bar{N} \Sigma N-\bar{N}^{\prime} \Sigma N^{\prime}\right)$
If ϕ has also scalar couplings $g_{s} \phi\left(\bar{N} N+\overline{N^{\prime}} N^{\prime}\right) \quad$ Moody \& Wilczek '84 then interaction potentials between two bodies are
$(\text { monopole })^{2}: \quad V_{m m}(r)=-\frac{g_{s}^{(1)} g_{s}^{(2)}}{4 \pi r} e^{-m_{\phi} r}$
monopole-dipole : $\quad V_{m d}(r)= \pm \frac{g_{s}^{(1)} g_{p}^{(2)}(\boldsymbol{\sigma} \cdot \boldsymbol{n})}{8 \pi m_{2}}\left[\frac{m_{\phi}}{r}+\frac{1}{r^{2}}\right] e^{-m_{\phi} r}$
Therefore the Earth could be the source of $\nabla \phi$: spin-dependent potential 13 orders of magnitude weaker than gravity would suffice
... but the source of $\nabla \phi$ could be some unknown matter with cosmological distribution

Summary

Neutron - mirror neutron oscillation - violating Baryon number - can be rather fast, faster than neutron decay itself ... and it can have several intrigiung implications for particle phenomenology (underlying TeV physics at LHC), astrophysics (cosmic rays, instability of neutron stars, etc.) and cosmology (primordial baryogenesis: $\Omega_{B}^{\prime} \geq \Omega_{B}$, BBN, etc).

May influeence neutron lifetime measurements
$\frac{N_{\text {fin }}}{N_{\text {in }}}=\exp \left[-\Gamma t+R \nu t+P_{n n^{\prime}} \nu t\right] \quad P_{n n^{\prime}}(\vec{B})$
Easy to detect - comparing counts for different \vec{B}, regular loses cancell out. Crucial test: the neutron regeneration $n \rightarrow n^{\prime} \rightarrow n$

Indications for "up-down" anomalies in the UCN counts with respect to \vec{B} direction - just statistical fluctuations ?
if not, can be explained by the mirror magnetic filed $B=0.03-3 \mathrm{G}$: on the Earth, in Solar System or in Galaxy
the latter \longrightarrow Day-Nigh (or siderial time) variations in comparing the UCN counts with opposite directions of the magnetic field. would be good to check experimentally !

Appendix 1: SUSY, GUT and O \& M interactions

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Experiment
- Higgs-Higgs' quartic: $\lambda\left(\phi^{\dagger} \phi\right)\left(\phi^{\prime \dagger} \phi^{\prime}\right)$ could be interesting for the Higgs physics at the LHC ... but BBN: $\lambda<10^{-8}$! reaction $\phi \tilde{\phi} \rightarrow \phi^{\prime} \tilde{\phi}^{\prime}$ should not bring mirror sector in equilibrium with our particles ... natural in SUSY : lowest order mixed Higgs term is $D=5$ operator $W=\frac{1}{M_{P l}}\left(\phi_{u} \phi_{d}\right)\left(\phi_{u}^{\prime} \phi_{d}^{\prime}\right) \quad-\quad$ in superpotential
- Photon-photon' kinetic mixing: $\varepsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$ mirror particles become "millicharged" $Q^{\prime} \sim \varepsilon Q$ relative to our photon Holdom '86 process $e^{+} e^{-} \rightarrow e^{\prime+} e^{\prime-}$ testable in positronium physics down to $\varepsilon \sim 10^{-7}$

Glashow '86, Gninenko '94
$N^{\prime} N$ nuclear scattering testable in DM detectors down to $\varepsilon \sim 5 \cdot 10^{-9} \quad$ Foot' 03 but BBN: $\left(e^{+} e^{-} \rightarrow e^{\prime+} e^{\prime-}\right.$ reaction) $\varepsilon<3 \cdot 10^{-8} \quad$ Carlson \& Glashow '87 and CMB+LSS: $\varepsilon<10^{-9}$ if mirror baryons constitute DM \quad Z.B. \& Lepidi 07 ... natural in GUT: lowest order mixed gauge term is $D=6$ operator

$$
\mathcal{L} \sim \frac{\Sigma \Sigma^{\prime}}{M_{P l}^{2}} G^{\mu \nu} G_{\mu \nu}^{\prime} \quad-\quad \text { e.g. } \quad \Sigma^{(\prime)}, G_{\mu \nu}^{(\prime)} \sim 24 \text {-plets in } S U(5) \times S U(5)^{\prime}
$$

Search for $n-n^{\prime}$ with the UCN storage

- Carrol's Alice...
- Mirror World

Counting of the UCN (ultra cold neutrons, velocities $v<4-5 \mathrm{~m} / \mathrm{s}$,) after a storage time t_{s} in a neutron trap, comparing the results for $B=0$ and $B \neq 0$.
$n\left(t_{s}\right)=n(t=0) \times \exp \left[-\left(\Gamma+\eta \nu+P_{n n^{\prime}}\left(t_{f}\right) \nu\right) t_{s}\right]$
t_{f} is a mean flight time between collisions ($\sim 0.05-0.1 \mathrm{~s}$), $\nu=1 / t_{f}$ is a collision frequency, and η is anomalous lose per collision by "natural" reasons (i.e. independent of magnetic field).

- For $B \neq 0: \quad P_{n n^{\prime}}\left(t_{f}\right)=\bar{P}_{B} \approx \frac{1}{2} \frac{\delta m^{2}}{\omega_{B}^{2}}=\frac{1}{2}\left(\frac{\tau_{B}}{\tau_{0}}\right)^{2}$
(Magnetic field is taken enough large to satisfy $t_{f} \gg \tau_{B} \approx \omega_{B}^{-1}$)
- For $B=0: \quad P_{n n^{\prime}}\left(t_{f}\right)=\left(\frac{t_{f}}{\tau_{0}}\right)^{2} \gg \bar{P}_{B}$

So signal is: $\frac{n\left(B=0, t_{s}\right)}{n\left(B, t_{s}\right)}=\exp \left[-a t_{s}\right]<1$, i.e. a should be positive
Fitting $a=\frac{1}{t_{f}}\left(\frac{t_{f}}{\tau_{0}}\right)^{2}$ from the measurements, one finds $\tau_{0}=\sqrt{t_{f} / a}$.

Experiment Ban et al. May 2007

- Carrol's Alice..
- Mirror World

The UCN storage trap with volume 21 I, neutron velocities $v<4 \mathrm{~m} / \mathrm{s}$, wall collision frequency $\nu=20 \mathrm{~s}^{-1}$, average flight time $t_{f}=0.05 \mathrm{~s}$ "zero" magnetic field $-B_{0}=(2-3) \cdot 10^{-5} \mathrm{G}$, changing magnetic fields "up" and "down", $\quad B_{\uparrow}=B_{\downarrow}=0.06 \mathrm{G}$ storage times $t_{s}=50,100,175 \mathrm{~s}$, effective times $t^{*}=t_{s}+23 \mathrm{~s}$

- Expectation: $\frac{n\left(B=0, t^{*}\right)}{n\left(B_{\left.\uparrow \downarrow, t^{*}\right)}=\exp \left[-a t^{*}\right]<1 \text {, i.e. } a>0\right.}$
- Fit of measurements: $\quad a=-(5.4 \pm 5.8) \cdot 10^{-6} \mathrm{~s}^{-1} \rightarrow \tau_{0}>103 \mathrm{~s}$

$t^{*}[\mathrm{~s}]$	$73(a)$	$73(b)$	123	198	
$n\left(B_{\uparrow}\right)$	44197 ± 53	44443 ± 53	28671 ± 30	17047 ± 31	
$n(B=0)$	$\\| 44317 \pm 40$	44363 ± 53	28635 ± 21	17015 ± 22	
$n\left(B_{\downarrow}\right)$	$\\|$	44128 ± 53	44316 ± 46	28596 ± 30	16974 ± 31

Up-Down Asymmetry

- Carrol's Alice...
- Mirror World
- Mirror Particles - Interactions
- B \& L violation - BBN demands - Present Cosmology
- Visible vs. Dark matter B vs. D - Fine Tuning demonstration Unification - Neutrino Mixing

$t^{*}[\mathrm{~s}]$	$n(B=0) / n\left(B_{\uparrow \downarrow}\right)$	$n\left(B_{\uparrow}\right) / n\left(B_{\downarrow}\right)$
$73(a)$	1.0035 ± 0.0013	1.0016 ± 0.0017
$73(b)$	0.9998 ± 0.0015	1.0028 ± 0.0016
$73(a+b)$	1.0019 ± 0.0010	1.0022 ± 0.0012
123	1.0001 ± 0.0011	1.0026 ± 0.0015
198	1.0002 ± 0.0018	1.0043 ± 0.0026

- Fit of $\frac{n\left(B=0, t^{*}\right)}{n\left(B_{\uparrow \downarrow}, t^{*}\right)}=e^{\beta\left(t^{*} / t_{f}\right)} \approx 1+\beta\left(\frac{t^{*}}{t_{f}}\right)$

$$
\beta=(2.92 \pm 2.90) \times 10^{-7} \quad(68.27 \% C L)
$$

- Fit of $\frac{n\left(B_{\uparrow}, t^{*}\right)}{n\left(B_{\downarrow}, t^{*}\right)}=1+\gamma\left(\frac{t^{*}}{t_{f}}\right)$
$\gamma=(1.22 \pm 0.40) \times 10^{-6}(68.27 \% C L)$

$n-n^{\prime}$ in non-degenerate case

- Carrol's Alice...
- Mirror World
$H=\left(\begin{array}{cc}m-i \Gamma / 2+V+\mu(\boldsymbol{\sigma} \cdot \boldsymbol{B}) & \delta m \\ \delta m & m^{\prime}-i \Gamma^{\prime} / 2+V^{\prime}\end{array}\right)$
Consider $2 \Delta E=\left(m^{\prime}-m\right)+\left(V^{\prime}-V\right) \neq 0$ - but small $\quad\left(\sim 10^{-12} \mathrm{eV}\right)$

$$
\begin{array}{ll}
H_{+}=\left(\begin{array}{cc}
m+V-2 \omega_{B} & \delta m \\
\delta m & m+V+2 \Delta E
\end{array}\right) & \text { for } \psi_{+}, \psi_{+}^{\prime} \text { states }, \\
H_{-}=\left(\begin{array}{cc}
m+V+2 \omega_{B} & \delta m \\
\delta m & m+V+2 \Delta E
\end{array}\right) \quad \text { for } \psi_{-}, \psi_{-}^{\prime} \text { states }
\end{array}
$$

Now (+) and (-) polarization states oscillate at different rates in magnetic medium, A being neutron polarization asymmetry:
$\bar{P}_{ \pm}(t)=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\left(\Delta E \pm \omega_{B}\right)^{2}}, \quad \bar{P}_{0}=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\Delta E^{2}}, \quad\left(\omega_{B}=\frac{1}{2}|\mu B|\right)$

- $\frac{n(B=0)}{n\left(B_{\uparrow \downarrow}\right)}$ asymmetry $\beta=\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{\omega_{B}^{2}\left(3 \Delta E^{2}-\omega_{B}^{2}\right)}{2\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}>0$ if $\Delta E>0.6 \omega_{B}$
- $\frac{n\left(B_{\uparrow}\right)}{n\left(B_{\downarrow}\right)}$ asymmetry $\gamma=A \times\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{2 \omega_{B} \Delta E^{3}}{\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}$ requires, $A>30 \%$

$n-n^{\prime}$ in non-degenerate case

Consider now the case but small ($\sim 10^{-12} \mathrm{eV}$)

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix
- Experiment
- Experiment
- Experiment
$H_{+}=\left(\begin{array}{cc}m+V-2 \omega_{B} & \delta m \\ \delta m & m+V+2 \Delta E\end{array}\right)$ for $\psi_{+}, \psi_{+}^{\prime}$ states ,
$H_{-}=\left(\begin{array}{cc}m+V+2 \omega_{B} & \delta m \\ \delta m & m+V-2 \Delta E\end{array}\right) \quad$ for $\psi_{-}, \psi_{-}^{\prime}$ states
Now (+) and (-) polarization states oscillate at the same rates in magnetic medium, results do not depend on neutron polarization:
$\bar{P}_{ \pm}(t)=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\left(\Delta E+\omega_{B}\right)^{2}}, \quad \bar{P}_{0}=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\Delta E^{2}}, \quad\left(\omega_{B}=\frac{1}{2}|\mu B|\right)$
- $\frac{n(B=0)}{n\left(B_{\uparrow \downarrow}\right)}$ asymmetry $\beta=\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{\omega_{B}^{2}\left(3 \Delta E^{2}-\omega_{B}^{2}\right)}{2\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}>0$ if $\Delta E>0.6 \omega_{B}$
- $\frac{n\left(B_{\uparrow}\right)}{n\left(B_{\downarrow}\right)}$ asymmetry $\gamma=\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{2 \omega_{B} \Delta E^{3}}{\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}$
one can fit both data for $\Delta E \sim 10^{-12} \mathrm{eV}$

Mirror Physics: Summary

- Carrol's Alice..
- Mirror World
- String Theory: parallel D-branes or brane-antibrane
- restoring Parity: $L \leftrightarrow R$ - can remain exact (models of exact mirror parity) or spontaneously broken Z.B., Dolgov \& Mohapatra 96
- Common gauge forces between two sectors: e.g. $U(1)_{B-L}$, or (anomaly free) gauge flavour symmetry $S U(3)_{H}$ between fermion families: helps for SUSY flavour changing problem (D-terms) Z.B., 98
- Higgs sector stability: Higgs as pseudoGoldstone in SUSY accidental global $U(4)$ symmetry
Z.B., 05

Falkowski, Pokorski \& Schmalz 06

- Photon-photon' kynetic mixing (invisible 0-Ps decay) Holdom, Glashow neutrino-neutrino' (active - sterile) mixing Foot \& Volkas; ZB \& Mohapatra neutron - neutron' mixing (hydrogen - hydrogen') mixing ZB \& Bento pion - pion' mixing (DAMA vs. CDMS) ZB, Panci \& Rossi Kaon - Kaon' mixing (new features in CP-violation?) etc. etc.
- Strong CP-problem: new models for axion avoiding mass-coupling correlation $m_{a} \sim f_{\pi} m_{p i} / f_{a}$ Z.B., Gianfagna, Gianotti 2000

Mirror Cosmology \& Astrophysics: Summary

- Mirror sector should be cooler than ours: $T^{\prime} / T<0.5$ or so (BBN)
- Carrol's Alice..
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Dark matter of the Universe:
self-interacting dissipative (for exact parity): requires $T^{\prime} / T<0.2$ or WDM, or almost CDM (for broken parity)
- Baryogenesis \& dark matter genesis:

Bento \& Z.B., 2001
Understanding why $\Omega_{D} \sim \Omega_{B}$

- Microlensing (MACHOs) Z.B., Dolgov \& Mohapatra 96, Blinikov 98
- Gamma- Ray Bursts and Supernove Blinnikov 98; Z.B. \& Drago 99
- Super high energy neutrinos Berezinsky \& Vilenkin, 2000
- Propagation of ultra High energy protons
Z.B. \& Bento 05
- Quasars \& supermassive black holes ZB, Comelli \& Villante 2000
- Possible dark matter detection (DAMA vs. others)

Foot 2003

- Invisible planets and meteorits (Tunguska)

Foot, Silagadze
Thermal imprints of mirror matter
Foot \& Mitra

Mirror Matter Evolution epochs

- Carrol's Alice...
- Mirror World
Z.B., Comelli \& Villante, '01

- Earlier decoupling of mirror photons $(x<0.5)$:

$$
z_{\mathrm{dec}}^{\prime} \simeq x^{-1} z_{\mathrm{dec}} \quad x_{\mathrm{eq}}=0.05\left(\Omega_{M} h^{2}\right)^{-1} \simeq 0.3
$$

- Jeans scale is smaller: $\lambda_{J} \ll d_{H}$ before Matter=Radiation
- Silk scale is smaller : $\lambda_{S}^{\prime} \sim 5 x_{\mathrm{eq}}^{5 / 4}\left(x / x_{\mathrm{eq}}\right)^{3 / 2}\left(\Omega_{M} h^{2}\right)^{-3 / 4} \mathrm{Mpc}$

CMB \& LSS power spectra

- Carrol's Alice...

- Mirror World
- Mirror Particles
- Interactions
- B \& L violation - BBN demands - Present Cosmology
- Visible vs. Dark matter - B vs. D - Fine Tuning demonstration - Unification - Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams - Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix
- Experiment
- Experiment
- Experiment

LSS power spectra

- Carrol's Alice...
 \section*{- Mirror World}

- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix
- Experiment
- Experiment
- Experiment
Z.B., Ciarcelluti, Comelli \& Villante, '03

Cosmic Fine Tuning?

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation - BBN demands
- Visible vs. Dark matter
- B vs. D - Fine Tuning demonstration - Unification - Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas

- Epochs

- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation
- Oscillation
- Fifth Forces
- Summary
- Appendix

The early Universe:

- multi-stage: Inflation \rightarrow (re)heating \rightarrow Friedmann epoch ...
- Universe is flat and homogeneous ...
- Adiabatic perturbations with nearly flat spectrum ...

Todays Universe:

- multi-component: visible matter, dark matter, dark energy ...
- $\Omega_{\mathrm{tot}} \approx 1 \quad$ Universe is flat: $\rho_{\mathrm{tot}}=\rho_{c r} \ldots$
$\square \Omega_{\mathrm{B}} \simeq 0.04$ visible (Baryon) matter is a small fraction ...
■ $\Omega_{\mathrm{D}} \simeq 0.20$ dark matter: WIMPS? Axions?
■ $\Omega_{\Lambda} \simeq 0.75$ dark energy: Λ-term? 5th-essence?

Cosmic Fine Tuning?

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation - BBN demands
- Visible vs. Dark matter
- B vs. D - Fine Tuning demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation - Oscillation
- Fifth Forces
- Summary
- Appendix

The early Universe:

- multi-stage: Inflation \rightarrow (re)heating \rightarrow Friedmann epoch ...
- Universe is flat and homogeneous ...
- Adiabatic perturbations with nearly flat spectrum ...

Todays Universe:

- multi-component: visible matter, dark matter, dark energy ...

■ $\Omega_{\text {tot }} \approx 1 \quad$ Universe is flat: $\rho_{\text {tot }}=\rho_{c r} \ldots$
■ $\Omega_{\mathrm{B}} \simeq 0.04$ visible (Baryon) matter is a small fraction ...
■ $\Omega_{\mathrm{D}} \simeq 0.20$ dark matter: WIMPS? Axions?
■ $\Omega_{\Lambda} \simeq 0.75$ dark energy: Λ-term? 5th-essence?
Anthropic World? Origin and nature of DM \& DE remain open!
Unified picture for BM and DM - Mirror Matter?

Boltzmann Eqs.

- Carrol's Alice...
- Mirror World

Evolution for (B-L) ${ }^{\prime}$ and (B-L) $\quad T_{R} \ll M$
$\frac{d n_{B-L}}{d t}+3 H n_{B-L}+\Gamma n_{B-L}=\frac{3}{4} \Delta \sigma n_{\mathrm{eq}}^{2}$
$\frac{d n_{B-L}^{\prime}}{d t}+3 H n_{B-L}^{\prime}+\Gamma^{\prime} n_{\mathrm{B}-\mathrm{L}}^{\prime}=\frac{3}{4} \Delta \sigma^{\prime} n_{\mathrm{eq}}^{2}$
$\Gamma \propto n_{\mathrm{eq}}^{\prime} / M^{2}$ is the effective reaction rate of $\Delta L^{\prime}=1$ and $\Delta L^{\prime}=2$ processes
$\Gamma^{\prime} / \Gamma \simeq n_{\mathrm{eq}}^{\prime} / n_{\mathrm{eq}} \simeq x^{3} ; \quad x=T^{\prime} / T$
$\Delta \sigma^{\prime}=-\Delta \sigma=\frac{3 \varepsilon_{C P} S}{32 \pi^{2} M^{4}}$
where $S \sim 16 T^{2}$ is the c.m. energy square,
$\varepsilon_{C P}=\operatorname{Im} \operatorname{Tr}\left[\left(y^{\dagger} y\right)^{*} g^{-1}\left(y^{\prime \dagger} y^{\prime}\right) g^{-2}\left(y^{\dagger} y\right) g^{-1}\right]$
$Y_{B L}=D(k) \cdot Y_{B L}^{(0)} ; \quad Y_{B L}^{\prime}=D\left(k x^{3}\right) \cdot Y_{B L}^{(0)}$
$Y_{B L}^{(0)} \approx 2 \times 10^{-3} \frac{\varepsilon_{C P} M_{P l} T_{R}^{3}}{g_{*}^{3 / 2} M^{4}}$.

Exact M-parity: $M_{N}^{\prime}=M_{N}$

- Carrol's Alice...

- Mirror World
- Mirror Particles
- Interactions
- B \& L violation - BBN demands - Present Cosmology
- Visible vs. Dark matter - B vs. D - Fine Tuning demonstration - Unification - Neutrino Mixing

$n_{B} / n_{B}^{\prime}=D(k), \quad k=\left[\Gamma_{\text {eff }} / H\right]_{T=T_{R}}: \quad \Omega_{B} / \Omega_{B}^{\prime} \simeq 0.15-1$
Depletion factor $D(k)=\frac{3}{5} e^{-k} F(k)+\frac{2}{5} G(k) ; \quad$ for $k \ll 1, D(k)=1$ $F(k)=\frac{1}{4 k^{4}}\left[(2 k-1)^{3}+6 k-5+6 e^{-2 k}\right]: \quad T>T_{R}$, $G(k)=\frac{3}{k^{3}}\left[2-\left(k^{2}+2 k+2\right) e^{-k}\right] ; \quad T<T_{R}$
Heating: $\quad \Delta N_{\nu} \simeq k / g_{*} \quad x=\left(k / 6 g_{*}\right)^{1 / 4}<0.2: \quad k \leq 2, \quad(L S S)$

Broken M parity: $M_{W}^{\prime}>M_{W}$?

- Carrol's Alice...
- Mirror World
- Mirror Particles
- Interactions
- B \& L violation
- BBN demands
- Present Cosmology
- Visible vs. Dark matter
- B vs. D - Fine Tuning
demonstration
- Unification
- Neutrino Mixing
- See-Saw
- Leptogenesis: diagrams
- Leptogenesis: formulas
- Epochs
- Neutron mixing
- Neutron mixing
- Oscillation
- Probabilities
- Neutron mixing
- Experiment
- Oscillation
- Oscillation - Oscillation

Spont. broken M parity: $v^{\prime} \gg v$
Z.B., Dolgov \& Mohapatra '96

$n_{B}^{\prime} \simeq n_{B} \quad k<1$ (robust non-equilibrium)
$M_{N}^{\prime} / M_{N} \simeq\left(\Lambda^{\prime} / \Lambda\right)$ changes slowly with M_{W}^{\prime}
$m_{e}^{\prime} / m_{e} \simeq M_{W}^{\prime} / M_{W}$ changes fastly with M_{W}.

- Properties of MB's get closer to CDM : $M_{W}^{\prime} \sim 10 \mathrm{TeV}$?

